A General Purpose Toolset For Representing Data Relationships: Converting Data Into Knowledge

Joshua Stillerman, Thomas Fredian,
Martin Greenwald, John Wright
MIT Plasma Science and Fusion Center

Data Challenges

Situation

- Collecting data has never been easier
- Making sense of data –
 extracting knowledge is
 getting harder
- Scientists are struggling to keep up with the growth In data volume and complexity

Our Thesis

- The challenge is all about putting the data into context
- "navigational metadata" Context is about metadata and relationships among data objects
- In general, our approach to capturing and exploiting this class of metadata has been ad hoc and inadequate

What Sorts Of Data Might Exist From A Typical Experiment?

- Hierarchical data stores with raw and processed data
- Relational databases with "high level" results
- Electronic logbooks & annotation
- Data provenance systems
- Data catalogs
- Data dictionaries
- Information about experimental campaigns & plans
- Information about people
- Experimental proposals
- Simulation inputs & outputs
- Source code management systems
- Facility information, with details of experiment, measurement systems
- Document management systems
- Publications & presentations

Understanding Data is About Context

- In the past when things were smaller and simpler, we could keep data context in our heads
 - or in our colleague's heads
- Context is metadata about its relationships between data
- These relationships enable data discovery.
 - Adjacency to find descriptive metadata
 - Adjacency to find other interesting data
- These problems exist in almost all data intensive areas of research.
- We each build a set of ad-hoc, domain specific tools to store, explore, and retrieve this relationship metadata.
- Our team is starting to build general purpose software to address these needs.

Hand recorded data:

Wow – "I don't have to draw it by hand!"

Polaroid photos of oscilloscopes:

Polaroid DS34 Direct Screen Instant Camera

Pasted into lab notebooks

Wow - "I don't need to draw a picture of the screen!"

Purpose built data acquisition programs:

Wow - "I don't need a ruler, I don't need to type in the numbers"

Data Acquisition systems – like MDS:

Wow – "I don't need a programmer to get my data!"

Data management systems – MDSplus:

Wow - "I can find out the context of this measurement!"

- Each step of this progression made the collection, and then organization, of collected data easier.
- When it was hard to collect data, collecting it was good.
- As it was easy to collect data, the need for organizing metadata became apparent.
- But the data still had ONE primary organization
 - Statically defined by the system implementers

Use MIT's WorldCat to search Borrow Direct and librarie

Basic Search of Full Catalog

Search type:

Title begins with...

Title Keyword

Author (last name first) Author Keyword

Call Number begins with...

---- Scroll down for more choices

Search for:

"data science"

Example(s):

darwin origin
(wom!n or female) and scie

Shopping For Data

- Online services are very good at helping customers find things they are interested in.
- Search filter and browse
 - Search across multiple criteria
 - Filter by constraint
- Browse 'related items'
 - Customers who bought this also bought...
 - Customers who looked at this ended up purchasing ...
 - Product reviews

Why not 'shop' for interesting useful data?

Data Relationships are Graphs

- MPO Metadata
 Provenance Ontology
- Data provenance represented as directed acyclic graphs

Data Relationships are Graphs

Sloan Digital Sky Survey

These implementations tend to be purpose built.

Navigational Metadata

Search and navigate within and among different data organizations.

Generalize Data Relationship Tools

- Store schema information the collection of relationships – as data
 - Provide an API and a GUI populate and explore the data relationship schemas.
- Store instance information the actual relationships between specific records – as data
 - Provide an API and GUI to populate and explore the data relationship instances.
- Represent all data instances as URIs so that the relationship graphs are agnostic to the type of data being related

Data Granularity

- MPO pointed out a problem with granularity.
 - To compute useful things from the provenance graphs, URIs need to be very specific.
 - To display something interesting/understandable we need to summarize.
- This need to display reduced detail exists in many contexts.
 - Zooming in and out on complex graphs, timelines and maps.
 - Zooming in and out on maps

Sharing Tools Within and Between Communities

- Within a community, scientists can easily make sense of the data at all research facilities in their field of expertise.
 - They know how to use the tools
 - The tools provide data connections needed to understand results
- Developers can share efforts and entire community can take advantage of them.
- MDSplus has been both of these things in the magnetic fusion research community.
- To realize the former, it is likely a community would adopt shared schemas to describe their experiments. Users would then know how to work at other sites, with other data sets.
- The latter will enable disparate research communities (Fusion Energy, Earth Science, Social Science) to leverage each other's conceptual and implementation development work.

Costs and Mitigations

- For these metadata to be useful and interesting, they have to be populated.
 - This will take effort on the part of the users.
 - The benefits of that effort will not be realized until the metadata exists.
 - The primary beneficiaries of this will probably not be the people doing this work.
 - They will each benefit from each other's efforts.
- An easy entry slope
 - Encode existing data relationship systems
 - Mine them for initial data sets
 - Populate them automatically where possible

We are Just Getting Started

The project is funded by NSF starting Oct '16

- What are we missing?
- What is not going to work?
- What other kinds of data relationships should we support?
- Are there data that can not be described by URIs?
- Your questions ?